On Getting Rid of JavaScript

Alessandro Vermeulen (3242919)
Department of Computer Science, Utrecht University

February 23, 2012

1 Introduction

Haskell is a beautiful and powerful language. Its functional background and
strong type system makes it particularly useful for programming complicated
computations and programs. Although Haskell is intrinsically well suited to
program calculations it is, from a programmer’s standpoint, harder to write a
application with a native GUI in it. Currently there are only two options when
writing a GUI: either use wxHaskell or GTKHaskell. Both bindings to the GUI
suffer however from being not well maintained and in being difficult to set up.

One solution to work around needing a complicated binding to a GUI library is
to create a website. This website will look and work (virtually) the same across
multiple operating systems and browsers. It is then the browser that will take
care of providing the correct, operating specific, look and feel to the website.

Traditionally websites are ‘programmed’ in HTML and JavaScript.

This project was all about showcasing the UHC’s JavaScript-backend. The idea
is to get rid of the necessity of having to write your own JavaScript. JavaScript is
a language that contains idiosyncrasies, such as the changing of the scope of this.
On top of that although it is an imperative, object-oriented, programming lan-
guage with support for first class functions, it does not contain convenient ways
of partial application, and lazy evaluation. All essential elements of Haskell. In
addition it is not a statically typed language so mistakes are easy to make.

In the following section we will provide some basic knowledge. The reader ac-
customed with the UHC JavaScript backend may skim ahead to section 3 where
we describe the goal of this project. In section 4 we describe the web application
itself. In section 5 we describe the additions made to the uhc-jscript library.
After this some of the more interesting encountered problems are described in
section 6. Section 7 will describe future work and section 8 will show how to set
up the application. Finally we will conclude with the conclusion in section 9.

2 Prelude

The FFI in UHC supports exporting and importing functions to and from
JavaScript. It is named the “jscript calling convention”. An import looks like
the following:

foreign import js "window.location.url"
windowLocationURL :: 10 JSString

This makes the property window o location o url available as a Haskell func-
tion named windowLocationURL. Exporting functions is also possible by using
export instead of import:

foreign export jscript "fib" fib :: Int — Int

Exporting an Haskell function will wrap it in a native JavaScript function that
will force evaluation.

For more information on the UHC FFI and the UHC Foreign Expression Lan-
guage read “Improving the UHC JavaScript backend” [9].

The most used function in jQuery is the jQuery function and its alias $. It is
available from module Language .UHC. JScript . JQuery. JQuery in the uhc-jscript
[10] as jQuery :: String — 10 JQuery. Consider the following HTML snippet, it
represents a button.

<input type="button" id="foo" value="Click me!"/>

Adding an on-click event to this button is quite easy. With the following code
you add an on click event that will show an alert box with the text “Hello
world!”.

main = do
button < jQuery "input#foo"
let eventHandler _ _ = alert "Hello world!"
bind button Click eventHandler

In the code example above the button is requested by its CSS selector, processed
through jQuery to add the jQuery functionality (by jQuery), then we create an
event handler that will always show an alert box with the text “Hello world!”.
Finally we add this event handler to the button as a function to execute when we
click on the button. The bind function takes care of converting the Haskell func-
tion to a JavaScript function before registering as a callback for the JavaScript

event.

3 The goal

This project is a case-study to find out whether programming a website in
Haskell using the UHC JavaScript backend is feasible. And to in the process add
additional features to the backend or register them for future implementation.

4 The application

In this project I have ported the ‘JCU app’[l1], a teaching assist tool for
Prolog written at Utrecht University. It was written using Brunch [2] and
coffeescript [1]. Brunch contains a library to add models and views to JavaScript
(called BackBone), and coffeescript is a syntactic sugar language for JavaScript.

The application consists of an input box where one can enter the Prolog term
to be ‘proven’ on the left hand side and a list of rules that are available in the
environment on the right hand side. The student can prove the statement by
dropping a rule from the environment on the tree on the left. Each node (term)
will expand according to the definition of the rule if the term in the node and
the rule are unifiable. In addition the student can perform manual substitutions
by entering a variable and its substitution. During this process the student can
hit “Check Proof” to see whether he has made any mistakes.

In according with the goal stated above the idea was to port the ‘JCU’ app as
directly as possible, minimizing the areas where things could go wrong. Rewrit-
ing the application to use the full extent of Haskell’s language constructs is left
for future work. See section 7.4 for a more detailed description.

In the porting process I started with moving the templates such as they were
stored in Brunch. (They are stored in separate files.) When porting these
templates I had to take into account that Brunch wraps each view or template
inside another element. Currently the templates are written down as a single
line with all quotes (") escaped. This way of including templates is inconvenient
as it will make it harder to maintain them. See also section 6.4.

Next on the list was retrieving the rules stored on the server through an AJAX
request. For this the uhc-jscript library needed extensions. See section 5 for
more on this. In the original application the requests were made blocking which
among other things also meant that the function call could return its result but
it also meant blocking any DOM operations or other JavaScript evaluating. In
the port we switched to proper asynchronous calls. This meant that functions
containing these calls had to be split up in two parts. One part for gathering

and validating the necessary data and the second part for handling the result
of the call to the server.

The interesting part happens in the proof tree. In the original application there
was a global store containing the tree. From this the tree was drawn in HTML
and labels indicating the level and element, in essence the path to the node in
the tree, of the node were attached as id to the input elements. When a rule
is dropped on one of the terms in the proof tree it would lookup this path, and
send it to the server together with the proof tree for checking of the validity of
the proof.

Instead of this detour we now directly try to validate the proof in the browser.
This is possible because the uu-tc and NanoProlog library are compilable with
UHC to JavaScript. A side-effect of this is that the web application and indeed
the whole ‘tab’ in the browser may hang when the proof checking shoots into
infinite recursion. Section 6.2 describes this problem in more detail. The event
handler for handling the event when a rule is dropped on the proof tree is
partially applied with the current proof tree, as an alternative to looking it up
somewhere in globally existing tree.

When a rule is dropped they are unified and if that succeeds the expanding of
the rule happens, resulting in a new proof tree that is then drawn again, together
with the updated event handlers containing the new proof. An interesting issue
regarding the this keyword occurred and is described in section 6.1.

The result of the port is a 300 lines long Haskell file containing also comments,
as well as several additions to the uhc-jscript library, see section 5.

4.1 The advantages

The advantages of programming the client side in Haskell are numerous. One of
the biggest advantages is being able to use Haskell code in your web applications
with the same semantics as you are used to from your normal Haskell programs.
In our case it was almost no work at all to reuse the code from the server side
in the client app. This meant it was possible to drop in the uu-tc[7] parser
and the NanoProlog library. Also section 7.1 describes a possibility we can take
advantage of. By using uu-tc and the NanoProlog library directly in the client
application we eliminated the need to communicate with the server for all but
storing the rules on the server.

One thing to look out for however is the limited support of post Haskell’98
of UHC. Not all advanced features from GHC are available such as type level
computations, e.g. type families, so not every package will work with UHC.
More importantly Cabal and UHC don’t play nice together at the moment.
This means you might have to do some additional work to get a hackage package
included in your UHC program by unpacking and telling the compiler where to
look manually.

The JCU application used some GHC only features in the same files as where it
defined its types for handling Prolog. Thus the types and Prolog proof check-
ing code have been copied from the JCU application instead of importing the
module.

Additionally the client-side application now always works as expected. In the
original application the drag-and-drop did not always work on the first load.

4.2 Disadvantages

The only disadvantage that can be noted is that the interaction with the user
has become a tiny bit slower. It now mainly depends on the computer’s speed
instead of the server’s speed and latency of the connection to the server. This
because all computations are now run in JavaScript on the client. The upside is
that working on large proof trees does not slow down the interaction much. For
the end-user (the student) this might even be an improvement as connections
to the server tend to be slow, and because a lot of students use the program
simultaneously, e.g. during class. The ‘slow’ performance in the client-side code
could also be alleviated by performing heavier optimizations during compilation
from Haskell to JavaScript, by improving the efficiency of the RTS, and by
improving the efficiency of the JavaScript engine itself.

5 Additions to the uhc-jscript library

As the original application uses coffeescript and Brunch, as well as jQuery
and jQuery UI to program the user interface, we need to create bindings to
jQuery and jQuery UI. We decided to bind to jQuery and jQuery UI directly
as you would do that when writing plain JavaScript and because writing it in
Haskell from scratch would take too much time. Just binding to Brunch would
be to little work to be interesting. So in order to create the port the existing
bindings to JavaScript and especially to jQuery and jQuery Ul needed to be
improved and extended. Bindings to as well as abstractions over the jQuery’s
Ajax functionality have been added. This has been done as well for the Ajax
Queue [8], jQuery UI Draggable, jQuery UI and Droppable libraries have been
added.

When communicating through AJAX/JSON you have to pass along JavaScript
values. However when you want to use you have to parse them into Haskell
values. (In order not to change to much on the server-side and to prevent it
from being to dependent on the Haskell runtime representation we decided to
keep communicating in JSON.)

To ease converting Haskell values from and to JavaScript values there exist two
classes: From.JS and ToJS. One can easily see that these functions (t0JS and
fromJS) are not safe as they do not have a way to express failure.

class ToJS a b where

toJS ::a—b

class From.JS a b where

fromJS ::a — b

A ‘safe’ From.JS class has also been added called From.JSPlus. This works by
checking the JS type of the object you are about to convert. This behaviour
is the default implementation and can be replaced by another. It resembles
the Typeable class but uses a simpler type representation that directly maps to
JavaScript’s type system.

class From.JS a b = From.JSPlus a b where
jsType :: a — b — String
check :: a — b — Bool
check a b = jsType a b = fromJS (typeof a)
fromJSP :: a — Maybe b
fromJSP a = let (v :: b) = fromJS a
in if check a v then
Just v
else
Nothing

The (v :: b) is necessary to restrict the type of v to a monomorphic type, UHC
is not able to discover this on his own accord.

An example here would be the conversion from a JavaScript string to Haskell
string.

instance FromJSPlus JSString String where
jsType — _ = "string"

When you use fromJSP instead of fromJS you are able to catch the error when
something went wrong, the default implementation of check just checks the
JavaScript type but you could also change the functions such that it would
perform a real ‘parse’ of the value.

6 Encountered issues

During the port of the program I encountered the following issues, I will describe
their origin and we will see the solution offered.

6.1 The annoying wandering scoped this

A common and well-known problem and powerful semantic when programming
in JavaScript is that the scope of this is relative to where the function containing
the reference to this is being executed. This can and indeed does lead to many
cases of unexpected behaviour.

The jQuery UI library ensures that this in the event callbacks points to the
object you, e.g., dropped another object on, instead of passing it as an argument.
However, in our RTS we wrap functions in other objects, thus changing the scope
of this. In order to work around this I've added the following JavaScript code
to the system. As this function will be called by the event system the this in the
code refers to the event object. By pushing it onto the front of the arguments
array we copy it and thus make it available for use further on in our Haskell
code.

function wrappedThis(cps) {
return function() {
var args = Array.prototype.slice.call(arguments);
args.unshift(this);
return cps.apply(this, args);
3
}

The code is agnostic of the amount of parameters the cps parameter needs but
just pushes the this to the front of the argument list. This is reflected in the
wrapper on the Haskell side as follows:

type UlEventHandler = JQuery — JUI — 10 Bool
type UlThisEventHandler = JQuery — JQuery — JUI — IO Bool
type JUIThisEventHandler = JSFunPtr UlIThisEventHandler

foreign import js "wrappedThis (%1)"
wrappedJ QueryUlEvent :: JUIThisEventHandler
— 10 JUIFEventHandler

The function wrappedJQueryUlEvent will call wrappedThis, that in essence
partially applies the provided function with this. And thus its result type is
JUIEventHandler.

Instead of wrapping functions when you need them to access this manually by
calling wrappedThis the wrapping of this can also already be done when dynam-
ically creating the JavaScript function. That is directly in the the function that
is generated by calling the imported ‘wrapper’. The wrapper would then always
output a function that receives an extra this argument. The disadvantage here

is that it will introduce extra overhead, however it could potentially cause less
unexpected behaviours. Additionally the type of the this argument is not al-
ways known so it might not be the correct place to do this. One step further
would be to change the JSFunPir type to always include a this argument.

The following code shows how to add make list items droppable. That means,
make them able to receive an item.

dropzones < jQuery "1i"

drop < mkJUIThisEventHandler (\this event ui — return True)

drop’ <« wrappedJ QueryUlEvent drop

droppable dropzones $ Droppable (toJS "someAllowedSelectorClass")
drop’

Providing the this element as a parameter would give less cause for the user of
the uhc-jscript library to import the keyword this into their application and
use it in the same way as they would have used in the JavaScript counterpart
of the function as shown below. (The return True is the noop operation for
jQuery events.)

foreign import js "this"
getThis :: 10 (JSPtr a)
eventHandler = do
this < getThis
doSomething this’

In the example above this will point to an object of the Haskell RTS and not,
e.g., the object that received a draggable object.

6.2 (Possibly) Non-terminating code

As our program includes a checker for Prolog proofs our application contains
code that might not terminate as is in general not possible to check a Prolog
proof without shooting into infinite recursion. (Try to proof the term f with
the rule f F f, reads as you can prove f if you have f.)

In the original setup all the (heavy) calculation was done by the server. The
server also is able to set a timeout on calculations, or rather, requests in general.
As JavaScript is single threaded (mainly) the infinite checking of the proof would
block the whole server. In the hope that with Deferred from jQuery would solve
this I added the following JavaScript code to the lib and created a binding to it
in Language .UHC. JScript.JQuery.Deferred.

function boundExecution(calc, fallback, timeout, onC, onF) {
var dfd = new jQuery.Deferred();

var tryBranch = function() {
var res = calc();
dfd.resolve(res);

};

var fallBackBranch = function() {
var res = fallback();
dfd.reject(res);

}

setTimeout (fallBackBranch, 5 + timeout);
setTimeout (tryBranch, 5);

$.when(dfd.promise()).then(onC, onF);

This still doesn’t work in our case as the checking doesn’t pause at any time
or use setTimeout. Suppose that the code was written in a CPS[3] monad
one could use that to introduce setTimeouts in the JavaScript code with a
minimal interval. This would most likely create a situation that would work with
jQuery o Deferred when used in the same fashion as the above code example.

WebWorkers A better, more suited, approach is to use Web Workers|[12].
WebWorkers are a part of the new HTML5 standard. These web workers work in

a background thread. Using them should solve our problem as they will work in

the background and can be killed. This way we can put a timeout on the check-

ing. I've tried to walk this path and added the Language .UHC. JScript . JQuery.WebWorker
file to the uhc-jscript library for it. However, the crucial point here is the

passing of data. The messages that pass along the channel between the Worker

and the main thread should not contain functions. As our thunks contain func-

tions they cannot be send directly.

Attempts to serialize the Haskell thunk layout using JSON .stringify failed as it

does not support serializing functions. In essence the thunks need either to be
fully evaluated or the serialization should be written in Haskell and is left for
future work.

Working around it Currently proof checking is disabled by default when the
user opens the application. The button “Check Proof” will toggle the checking of
the proof. This circumvents the checking of intermediate non-checkable proofs.

6.3 Global state

Instead of using a State or Reader monad containing an /ORef to save whether
proof checking should be done or not I use an hidden input field as a store.
In the future this could perhaps be changed to run everything in the State or
Reader monad. However, depending on the application this might add a lot of
extra liftIO calls to lift our normal calculations back into /0.

6.4 Miscellaneous

Among the small other issues I encountered are the following:

Overlapping instances are a bit tricky in UHC. If you happen to create
such a condition you will get the error that an instance does not exist at alll So
watch out for this!

Missing functional dependencies cause you to have to write down addi-
tional type signatures. Such as in the following scenario. Without the ::String
annotation the compiler will give you an error.

do jsRuleText < smth :: IO JSString
let ruleText = fromJS jsRuleText :: String

case tryParseRule ruleText of

Including large strings of text Currently it is not possible (per the Haskell

standard) to include multi-line strings or to add strings containing ” without
escaping them.
jcu.hs:139-152:
Predicates leading to ambiguous type:
preds : Language.UHC.JScript.Types.FromJS

10

UHC.Base.PackedString v_30_3523_2:
bindings : $ok: MONO [v_30_3559_0_0] ->
MONO UHC.Base.IO MONO UHC.Base.Bool
bindings (quantified): $ok: MONO [v_30_3559_0_0] ->
MONO UHC.Base.IO MONO UHC.Base.Bool

)

Literals in FFE are possible when using ” see the following example.

foreign import js "$(’document’) .ready (%1)"
_ready :: EventHandler — 10 ()

Creating new objects from Haskell is a bit of an hassle. The literal trick
from above doesn’t work as you will end up with “new Worker” between string
quotes in JavaScript.

foreign import js "’new Worker’ (%1)"
_newWorker :: JSString — 10 WebWorker

A solution would be to add the new keyword and syntax to the FFE.

7 Future Work

7.1 Communicating with the server

Currently the communication with the server is encoded manually. That is, the
creation of the JavaScript values to be send over hardcoded in the application.
When coding both the server and the client in Haskell one should be able to
create something like ‘typed channels’ for each server endpoint. This would
further improve the type safety of the application.

7.2 Background threading
Although the basic interface for using WebWorkers is present it is currently

not possible to seamlessly pass Haskell values due to the presence of functions.
Figuring out how then to pass Haskell values is subject to future research.

11

7.3 Generic /rom.JS and To.JS for converting objects/records

It should be fairly straightforward to implement a generic implementation for
From.JS and ToJS using deriving Generic.

7.4 Providing an api to build web applications

One could think of providing a similar API such as WxHaskell[5] does for con-
structing native application, but for web applications. Also one could think of
providing a Functional Reactive[6][13][1] interface to building the web applica-
tion.

8 Locations and setup

The UHC can be found here: http://www.cs.uu.nl/wiki/bin/view/UHC/.
The JCU application can be found here: https://github.com/spockz/JCU.
The client-side project is located in /resources/static/hjs. The uhc-jscript
can be found here: https://github.com/spockz/uhc-jscript.

The makefile in hjs assumes the presence of a $UHC variable containing the
location of the UHC. Additionally it expects the following three variables:
UHC_JSCRIPT, UHC_NANOPROLOG, and UHC_UU_TC to point to the source direc-
tories of respectively: uhc-jscript, NanoProlog (https://github.com/spockz/
NanoProlog), and the Utrecht Talen & Compilers Parser Library (http://www.
cs.uu.nl/wiki/bin/view/TC/CourseMaterials#Parser_Combinator_Library).
A package for is also available from hackage, maintained by Jurrién Stutterheim.

Be sure to have a PostgreSQL server running. You can configure the connection
to the server in the file JCU/config/connection_string.conf. The script to
create the tables is located in JCU/packaging/initPgSqlDb.sql.

9 Conclusion

We have seen that it is possible to program the client-side of a web application
in Haskell and that it is not a lot of work. Partial application can be used
as an alternative for global variables. Not only can you program simple web
applications but you can also include parser combinator libraries into them. On
top of it all the performance is relatively good. There is still room for progress
regarding improving the performance. It is possible to not have to write your
own JavaScript code.

12

http://www.cs.uu.nl/wiki/bin/view/UHC/
https://github.com/spockz/JCU
https://github.com/spockz/uhc-jscript
https://github.com/spockz/NanoProlog
https://github.com/spockz/NanoProlog
http://www.cs.uu.nl/wiki/bin/view/TC/CourseMaterials#Parser_Combinator_Library
http://www.cs.uu.nl/wiki/bin/view/TC/CourseMaterials#Parser_Combinator_Library

References

<

U

Heinrich Apfelmus. Reactive Banana. URL: {http://www.haskell.org/
haskellwiki/Reactive-bananal.

Brunch.I0. URL: {http://brunch.io/?}.

Koen Claessen. “A poor man’s concurrency monad”. In: J. Funct. Pro-
gram. 9 (3 May 1999), pp. 313-323. 18SN: 0956-7968. DOIL: http://dx.do
i.org/10.1017/50956796899003342. URL: http://dx.doi.org/10.101
7/50956796899003342.

CoffeeScript. URL: {http://coffeescript.org/?}.

et al. Daan Leijen. WxHaskell. URL: {http://www.haskell.org/haskel
lwiki/WxHaskell}.

Conal M. Elliott. “Push-pull functional reactive programming”. In: Pro-
ceedings of the 2nd ACM SIGPLAN symposium on Haskell. Haskell '09.
Edinburgh, Scotland: ACM, 2009, pp. 25-36. 1SBN: 978-1-60558-508-6.
DOI: http://doi.acm.org/10.1145/1596638.1596643. URL: http:
//doi.acm.org/10.1145/1596638.1596643.

Andres Loh, Johan Jeuring, and Doaitse Swierstra. UU-T'C: Haskell 98
parser combintors for INFOB3TC at Utrecht University. URL: {http :
//www.cs.uu.nl/wiki/bin/view/TC/CourseMaterials}.

Oleg Podolsky. jquery-ajaxq. URL: {http://code.google.com/p/jquer
y-ajaxq/}.

Jurrién Stutterheim. Improving the UHC JavaScript backend. Tech. rep.
Department of Information and Computing Sciences, Utrecht University,
2011.

Jurrién Stutterheim, Alessandro Vermeulen, and Atze Dijkstra. UHC-
JScript library. URL: {https://github.com/spockz/uhc-jscript}.
Wouter Swierstra, Doaitse Swierstra, and Jurrién Stutterheim. Logisch en
Functioneel Programmeren voor Wiskunde D. Tech. rep. UU-CS-2011-033.
Department of Information and Computing Sciences, Utrecht University,
2011.

W3C. Web Workers. URL: {http://dev.w3.org/html5/workers/}.
Zhanyong Wan and Paul Hudak. “Functional reactive programming from
first principles”. In: Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation. PLDI ’00. Vancouver,
British Columbia, Canada: ACM, 2000, pp. 242-252. ISBN: 1-58113-199-
2. DOL: http://doi.acm.org/10.1145/349299.349331. URL: http:
//doi.acm.org/10.1145/349299.349331.

13

{http://www.haskell.org/haskellwiki/Reactive-banana}
{http://www.haskell.org/haskellwiki/Reactive-banana}
{http://brunch.io/}
http://dx.doi.org/http://dx.doi.org/10.1017/S0956796899003342
http://dx.doi.org/http://dx.doi.org/10.1017/S0956796899003342
http://dx.doi.org/10.1017/S0956796899003342
http://dx.doi.org/10.1017/S0956796899003342
{http://coffeescript.org/}
{http://www.haskell.org/haskellwiki/WxHaskell}
{http://www.haskell.org/haskellwiki/WxHaskell}
http://dx.doi.org/http://doi.acm.org/10.1145/1596638.1596643
http://doi.acm.org/10.1145/1596638.1596643
http://doi.acm.org/10.1145/1596638.1596643
{http://www.cs.uu.nl/wiki/bin/view/TC/CourseMaterials}
{http://www.cs.uu.nl/wiki/bin/view/TC/CourseMaterials}
{http://code.google.com/p/jquery-ajaxq/}
{http://code.google.com/p/jquery-ajaxq/}
{https://github.com/spockz/uhc-jscript}
{http://dev.w3.org/html5/workers/}
http://dx.doi.org/http://doi.acm.org/10.1145/349299.349331
http://doi.acm.org/10.1145/349299.349331
http://doi.acm.org/10.1145/349299.349331

	Introduction
	Prelude
	The goal
	The application
	The advantages
	Disadvantages

	Additions to the uhc45jscript library
	Encountered issues
	The annoying wandering scoped functionthis
	(Possibly) Non-terminating code
	Global state
	Miscellaneous

	Future Work
	Communicating with the server
	Background threading
	Generic constructorFromJS and constructorToJS for converting objects/records
	Providing an api to build web applications

	Locations and setup
	Conclusion

